Browsed by
Tag: analytic solution CVM variables

Entropy Trumps All (First Computational for the 2-D CVM)

Entropy Trumps All (First Computational for the 2-D CVM)

Computational vs. Analytic Results for the 2-D Cluster Variation Method:   Three lessons learned: first computational results for the 2-D Cluster Variation Method, or CVM. The first-results comparisons between analytic predictions and the actual computational results tell us three things: (1) the analytics are a suggestion, not an actual values-prediction, and the further that we go from zero-values for the two enthalpy parameters, the more that the two diverge, (2) topography is important (VERY important), and (3) entropy rules the…

Read More Read More

Filling Out the Phase Space Boundaries – 2-D CVM

Filling Out the Phase Space Boundaries – 2-D CVM

Configuration Variables Along the Phase Space Boundaries for a 2-D CVM   Last week’s blog showed how we could get x1 for a specific value of epsilon0, by taking the derivative of the free energy and setting it equal to zero. (This works for the special case where epsilon1 is zero, meaning that there is no interaction enthalpy.) Last week, we looked at one case, where epsilon0 = 1.0. This week, we take a range of epsilon0 values and find…

Read More Read More

Obvious, But Useful (Getting the Epsilon-0 Value when the Interaction Enthalpy Is Zero)

Obvious, But Useful (Getting the Epsilon-0 Value when the Interaction Enthalpy Is Zero)

  This Really Is Kind of Obvious, But …   There’s something very interesting that we can do to obtain values for the epsilon0 parameter. Let’s stay with the case where there is no interaction enthalpy. In that case, we want to find the epsilon0 value that corresponds to the x1 value at a given free energy minimum. Or conversely, given an epsilon0 value, can we identify the x1 where the free energy minimum occurs? Turns out that, for this…

Read More Read More

An Interesting Little Thing about the CVM Entropy (with Code)

An Interesting Little Thing about the CVM Entropy (with Code)

The 2-D CVM Entropy and Free Energy Minima when the Interaction Enthalpy Is Zero:   Today, we transition from deriving the equations for the Cluster Variation Method (CVM) entropies (both 1-D and 2-D) to looking at how these entropies fit into the overall context of a free energy equation. Let’s start with entropy. The truly important thing about entropy is that it gives shape and order to the universe. Now, this may seem odd to those of us who’ve grown…

Read More Read More

Brain Networks and the Cluster Variation Method: Testing a Scale-Free Model

Brain Networks and the Cluster Variation Method: Testing a Scale-Free Model

Surprising Result Modeling a Simple Scale-Free Brain Network Using the Cluster Variation Method One of the primary research thrusts that I suggested in my recent paper, The Cluster Variation Method: A Primer for Neuroscientists, was that we could use the 2-D Cluster Variation Method (CVM) to model distribution of configuration variables in different brain network topologies. Specifically, I was expecting that the h-value (which measures the interaction enthalpy strength between nodes in a 2-D CVM grid) would change in a…

Read More Read More

The Cluster Variation Method: A Primer for Neuroscientists

The Cluster Variation Method: A Primer for Neuroscientists

Single-Parameter Analytic Solution for Modeling Local Pattern Distributions The cluster variation method (CVM) offers a means for the characterization of both 1-D and 2-D local pattern distributions. The paper referenced at the end of this post provides neuroscientists and BCI researchers with a CVM tutorial that will help them to understand how the CVM statistical thermodynamics formulation can model 1-D and 2-D pattern distributions expressing structural and functional dynamics in the brain. The equilibrium distribution of local patterns, or configuration…

Read More Read More

Analytic Single-Point Solution for Cluster Variation Method Variables (at x1=x2=0.5)

Analytic Single-Point Solution for Cluster Variation Method Variables (at x1=x2=0.5)

Single-Point Analytic Cluster Variation Method Solution: Solving Set of Three Nonlinear, Coupled Equations The Cluster Variation Method, first introduced by Kikuchi in 1951 (“A theory of cooperative phenomena,” Phys. Rev. 81 (6), 988-1003), provides a means for computing the free energy of a system where the entropy term takes into account distributions of particles into local configurations as well as the distribution into “on/off” binary states. As the equations are more complex, numerical solutions for the cluster variation variables are…

Read More Read More