Browsed by
Tag: 1-D CVM

Object-Oriented for the CVM (Continued), and an Oops!

Object-Oriented for the CVM (Continued), and an Oops!

Why Shifting to the Object-Oriented Coding Approach REALLY IS Important:   Well, I hate having to admit it. Mud on my face; all that. But I made a pretty significant Whoops! back this last winter when I posted a “Verification and Validation” document (hah!) to arXiv.     The Sad Story of My Previous Ineptitude   Well, there’s nothing like hearing about someone else’s screw-up in order to make us feel better about our own life, so here goes. I’d…

Read More Read More

Expressing Total Microstates (Omega) for the 1-D and 2-D CVM – Part 2

Expressing Total Microstates (Omega) for the 1-D and 2-D CVM – Part 2

Showing How the Omega Equation is Obtained for the 1-D and 2-D CVM – Part 2:   The cluster variation method (CVM) lets us characterize a system in terms of local patterns, and not just the numbers of units in on (A) and off (B) states. It works with a more complex entropy term. The natural question is: How do obtain this more complex entropy? This post continues a discussion begun in the last post, on how we actually get…

Read More Read More

Expressing Total Microstates (Omega) for the 1-D Cluster Variation Method – Part 1

Expressing Total Microstates (Omega) for the 1-D Cluster Variation Method – Part 1

The 1-D CVM – A Single Zigzag Chain – Part 1:   The cluster variation method (CVM) lets us characterize a system in terms of local patterns, and not just the numbers of units in on/off states. This is likely to be useful for machine learning and AI applications. Up until now, we’ve not told the story of how we actually compute the CVM entropy from the microstates. We’ll do that starting with this post; it will be a handy…

Read More Read More

Looking at Friends and Neighbors: A Node’s Point-of-View (2-D Cluster Variation Method)

Looking at Friends and Neighbors: A Node’s Point-of-View (2-D Cluster Variation Method)

Looking around from a Node’s Point-of-View:   As we move from procedural code to object-oriented Python for a Cluster Variation Method (CVM) grid, our perspective shifts. We now need to look at the world from a node’s point-of-view. It’s a lot like updating one’s relationship status in Facebook – except that after updating our own (node) status, we need to not only update the values for all of our own configuration variables, but then we need to travel around the…

Read More Read More

Transition to Object-Oriented Python for the Cluster Variation Method

Transition to Object-Oriented Python for the Cluster Variation Method

The Cluster Variation Method – A Topographic Approach:   Object-oriented programming is essential for working with the Cluster Variation Method (CVM), especially if we’re going to insert a CVM layer into a neural network. The reason is that approaching free energy minima via changing node states requires dealing with node, net, and grid topographies. If we’re going to be at all strategic in moving towards free energy minima, then we can’t just pick nodes at random. We need to know…

Read More Read More

The Cluster Variation Method: A Primer for Neuroscientists

The Cluster Variation Method: A Primer for Neuroscientists

Single-Parameter Analytic Solution for Modeling Local Pattern Distributions The cluster variation method (CVM) offers a means for the characterization of both 1-D and 2-D local pattern distributions. The paper referenced at the end of this post provides neuroscientists and BCI researchers with a CVM tutorial that will help them to understand how the CVM statistical thermodynamics formulation can model 1-D and 2-D pattern distributions expressing structural and functional dynamics in the brain. The equilibrium distribution of local patterns, or configuration…

Read More Read More

The 1-D Cluster Variation Method (CVM) – Simple Application

The 1-D Cluster Variation Method (CVM) – Simple Application

The 1-D Cluster Variation Method – Application to Text Mining and Data Mining There are three particularly good reasons for us to look at the Cluster Variation Method (CVM) as an alternative means of understanding the information in a system: The CVM captures local pattern distributions (for an equilibrium state), When the system is made up of equal numbers of units in each of two states, and the enthalpy for each state is the same (the simple unit activation energy…

Read More Read More

Visualizing Configuration Variables with the 1-D Cluster Variation Method

Visualizing Configuration Variables with the 1-D Cluster Variation Method

Cluster Variation Method – 1-D Case – Configuration Variables, Entropy and Free Energy We construct a micro-system consisting of a single zigzag chain of only eight units, as shown in the following Figure 1. (Note that the additional textured units, with a dashed border, to the right illustrate a wrap-around effect, giving full horizontal nearest-neighbor connectivity.) In Figure 1, we have the equilibrium distribution of fraction variables z(i). Note that the weighting coefficients for z(2) = z(5) = 2, whereas…

Read More Read More

Analytic Single-Point Solution for Cluster Variation Method Variables (at x1=x2=0.5)

Analytic Single-Point Solution for Cluster Variation Method Variables (at x1=x2=0.5)

Single-Point Analytic Cluster Variation Method Solution: Solving Set of Three Nonlinear, Coupled Equations The Cluster Variation Method, first introduced by Kikuchi in 1951 (“A theory of cooperative phenomena,” Phys. Rev. 81 (6), 988-1003), provides a means for computing the free energy of a system where the entropy term takes into account distributions of particles into local configurations as well as the distribution into “on/off” binary states. As the equations are more complex, numerical solutions for the cluster variation variables are…

Read More Read More