Browsed by
Category: Deep Learning

Getting Started in Deep Learning

Getting Started in Deep Learning

It’s been a lovely Christmas day. More social than any that I can remember, for a very long time. (Wonderful morning visit with my next-door neighbor. Great mid-day party. A sweet restorative nap afterwards.) And now, the thoughts that have been buzzing through and around my head for the past 48 hours — how to get started with deep learning. Of course there are all sorts of entry points. Historical, functional, mathematical… But what came to me, over these past…

Read More Read More

Approximate Bayesian Inference

Approximate Bayesian Inference

Variational Free Energy I spent some time trying to figure out the derivation for the variational free energy, as expressed in some of Friston’s papers (see citations below). While I made an intuitive justification, I just found this derivation (Kokkinos; see the reference and link below): Other discussions about variational free energy: Whereas maximum a posteriori methods optimize a point estimate of the parameters, in ensemble learning an ensemble is optimized, so that it approximates the entire posterior probability distribution…

Read More Read More