Browsed by
Category: A Resource – Slidedeck

Entropy Trumps All (First Computational for the 2-D CVM)

Entropy Trumps All (First Computational for the 2-D CVM)

Computational vs. Analytic Results for the 2-D Cluster Variation Method:   Three lessons learned: first computational results for the 2-D Cluster Variation Method, or CVM. The first-results comparisons between analytic predictions and the actual computational results tell us three things: (1) the analytics are a suggestion, not an actual values-prediction, and the further that we go from zero-values for the two enthalpy parameters, the more that the two diverge, (2) topography is important (VERY important), and (3) entropy rules the…

Read More Read More

Machine Learning: Multistage Boost Process

Machine Learning: Multistage Boost Process

Three Stages to Orbital Altitude in Machine Learning Several years ago, Regina Dugan (then Director of DARPA) gave a talk in which she showed a clip of epic NASA launch fails. Not just one, but many fails. The theme was that we had to risk failure in order to succeed with innovation. This YouTube vid of rocket launch failures isn’t the exact clip that she showed (the “action” doesn’t kick in for about a minute), but it’s pretty close. For…

Read More Read More

Labor Day Reading and Academic Year Kick-Off

Labor Day Reading and Academic Year Kick-Off

Deep Learning / Machine Learning Reading and Study Guide:   Several of you have been asking for guided reading lists. This makes sense.   Your Starting Point for Neural Networks, Deep Learning, and Machine Learning   Your study program (reading and code) depends on where you are. Starting out (High-grass country; St. Louis to Alcove Springs): Basic neural networks and deep learning; architecture for common networks, such as CNNs (convolutional neural networks); learning rules and architecture design. Well on the…

Read More Read More

Approximate Bayesian Inference

Approximate Bayesian Inference

Variational Free Energy I spent some time trying to figure out the derivation for the variational free energy, as expressed in some of Friston’s papers (see citations below). While I made an intuitive justification, I just found this derivation (Kokkinos; see the reference and link below): Other discussions about variational free energy: Whereas maximum a posteriori methods optimize a point estimate of the parameters, in ensemble learning an ensemble is optimized, so that it approximates the entire posterior probability distribution…

Read More Read More

Brain-Based Computing: Foundation for Deep Learning

Brain-Based Computing: Foundation for Deep Learning

Three Key Brain Strategies Used in Deep Learning for Artificial Intelligence   References for Brain-Based Computing (Methodologies for Deep Learning and Artificial Intelligence) Maren, A.J. (2015) How the Brain Solves Tough Problems. In Making Sense: Extracting Meaning from Text by Matching Entities and Terms to Ontologies and Concepts, Chapter 2 Draft. (Dec. 31, 2015). pdf Maren, A.J. (2015). Brain-Based Computing. (PPT Slidedeck) PPT  

Novelty Detection in Text Corpora

Novelty Detection in Text Corpora

Detecting Novelty Using Text Analytics Detecting novel events – new words, meaning new events – is one of the most important text analytics tasks, and is an important step towards predictive analytics using text mining. On July 24, 2015, The New York Times (and many other news sources) published an article identifying potential inclusion of classified information in the emails which Hillary Clinton had sent via private email and stored on her private email server. How would we use text…

Read More Read More