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Our Goal: 

 

Compute the probabilities for each of the microstates, and 
then the overall likelihood for the system to be in a given 

configuration.  
 

From there, identify which configuration is the most likely 
one for the system when we have specified a value for the 

upper level energy,      .  
 

To do this, we first need the partition function.  
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Recall our Probability and Partition Function Equations: 

Probability: Partition Function: 

NOTE: Because the probability function uses the partition 
function (Z) as a normalizing factor, we have to compute the 

partition function first.  
 

Thus, our first step is to obtain  
for each configuration (number of units in a given energy 

level) for our system.  
 

Recall that        is the total energy for the system in that state.  
That means,                        , where M is the total number of 

units in the upper energy level      .   
 

As always, we let            . 
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System 
state 

n0 = # 
Units at 

e0 

n1 = # 
Units at 

e1 

 

Total number of 
microstates 

1 10 0 1 

2 9 1 10 

3 8 2 45 

4 7 3 120 

5 6 4 210 

6 5 5 252 

7 4 6 210 

8 3 7 120 

9 2 8 45 

10 1 9 10 

11 0 10 1 

Given a specific energy for the upper level, e1, we can 
compute the energy for that configuration. 

Recall Our Microstates Table (from previous slidedeck): 

Symmetric Results,  
we get the same results 
when we have a certain 

number of units on the upper 
level as we when we have 
those same units on the 

lower level.   
 

Maximal number of 
microstates when equal 

numbers in upper and lower 
energy levels.  

This will connect with our 
notion of entropy later on.  

 



System 
state 

M = # 
Units at 

e1 

 

Q = Total 
number of 
microstates 

pj 

Total 
likelihood 

= Q*pj  

1 0 1 0 1.000 1.000 0.0456 0.046 

2 1 10 1 0.368 3.680 0.0168 0.168 

3 2 45 2 0.135 6.075 0.0062 0.279 

4 3 120 3 0.050 6.000 0.0023 0.276 

5 4 210 4 0.018 3.780 0.0008 0.168 

6 5 252 5 0.007 1.764 -- -- 

7 6 210 6 0.0025 0.525 -- -- 

8 7 120 7 0.001 0.120 -- -- 

9 8 45 8 -- -- -- -- 

10 9 10 9 -- -- -- -- 

11 10 1 10 -- -- -- -- 

Divide through by Z, which we just computed; Z = 21.944. 

Computing Actual Probabilities for Each Configuration: 
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Use: 
e1 = 1 1
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Interpretation: Winning energy level is for three units to be in 
energy level e1 = 1, followed closely by four units at that level.  



System 
state 

M = # 
Units at 

e1 

 

Q = Total 
number of 
microstates 

1 0 1 0 1.000 1.000 

2 1 10 1 0.368 3.680 

3 2 45 2 0.135 6.075 

4 3 120 3 0.050 6.000 

5 4 210 4 0.018 3.780 

6 5 252 5 0.007 1.764 

7 6 210 6 0.0025 0.525 

8 7 120 7 0.001 0.120 

9 8 45 8 Negligible Negligible 

10 9 10 9 Negligible Negligible 

11 10 1 10 Negligible  Negligible 

Given a specific energy for the upper level, e1, we can 
compute the energy for that configuration. 

Computing Likelihoods for Each Configuration: 
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e1 = 1 1
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 Energy level with most 

microstates is not the 
one that has the lowest 

total associated 
energy! 



Interpretation of Results: 

 
We just found the configuration (number of units at an the 

upper energy level) that was most probable, given a 
specific value for that energy level e1:  

 
1. It was NOT the level that had the lowest overall energy.  
2. It was NOT the level that had the most microstates.  
3. It was in-between. The “winning level” was a 

combination of low total energy AND lots of 
microstates. 

 
When we get to free energy minimization, we’ll be able to 
find this energy level much faster – single-shot equation.  

 
 



What We’ve Accomplished So Far: 

We now know how to do two steps in our journey through 
the “Rocky Mountains” of energy-based machine learning: 

 
1. Compute the partition function for the system, and then 
2. Compute the most likely probability for a given 

configuration (i.e., given specific M and (N-M)),  
 

Based on the probabilities and number of microstates per 
energy level, we are now able to: 

 

Figure out the most likely system configuration.  
 

This means that we are EXTREMELY CLOSE, in practice, to 
free energy minimization.  
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What We’ve Done So Far:  
1. Partition Function 
2. Probabilities (statistical mechanics method) 

 

Next Steps:  
3. Entropy 
4. Free Energy (& minimization thereof) 
5. Bayesian probabilities 
6. Kullback-Leibler Divergence 
7. Inference (approximation methods, e.g. variational Bayes) 
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We Are HERE:  
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