Statistical Mechanics for Neural Networks and Deep Learning

with Alianna J. Maren, Ph.D.

From Microstates to Partition Functions: *Including Examples*

The following material is <u>yet one more</u> accompaniment for the *Précis* for the book-inprogress, **Statistical Mechanics for Neural Networks and Deep Learning**. For more information, Opt-In at: <u>www.aliannajmaren.com</u>

Alianna J. Maren, Ph.D.

Our Goal:

Compute the probabilities for each of the microstates, and then the overall likelihood for the system to be in a given configuration.

From there, identify which configuration is the most likely one for the system when we have specified a value for the upper level energy, e_i .

To do this, we first need the partition function.

Recall our Probability and Partition Function Equations:

Probability: Partition Function:

$$p_{j} = \frac{1}{Z} \exp(-\beta E_{j}) \qquad \qquad Z = \sum_{j} \exp(-\beta E_{j})$$

NOTE: Because the probability function uses the partition function (Z) as a normalizing factor, we have to compute the partition function first.

Thus, our first step is to obtain $\exp(-\beta E_j)$ for each configuration (number of units in a given energy level) for our system.

Recall that E_j is the total energy for the system in that state. That means, $E_j = M * e_j$, where M is the total number of units in the upper energy level e_j .

As always, we let $\beta = 1$.

Recall Our Microstates Table (from previous slidedeck):

Given a specific energy for the upper level, e_1 , we can compute the energy for that configuration.

System state	n _o = # Units at e _o	n ₁ = # Units at e ₁	Total number of microstates		<u>Symmetric Results,</u> we get the same results when we have a certain
1	10	0	1		level as we when we have
2	9	1	10		those same units on the
3	8	2	45		lower level.
4	7	3	120		
5	6	4	210		Maximal number of
6	5	5	252		microstates when equal
7	4	6	210		numbers in upper and lower enerav levels.
8	3	7	120	l	
9	2	8	45		This will connect with our
10	1	9	10		notion of <u>entropy</u> later on.
11	0	10	1		

Computing Actual Probabilities for Each Configuration:

Divide through by Z, which we just computed; **Z** = **21.944**.

System state	M = # Units at e ₁	Q = Total number of microstates	$E_{j} = M * e_{1}$ Use: $e_{1} = 1$	$\exp(-\beta E_j)$ $\beta = 1$	$Q^* \exp(-\beta E_j)$	p _j	Total likelihood = Q*p _j
1	0	1	0	1.000	1.000	0.0456	0.046
2	1	10	1	0.368	3.680	0.0168	0.168
3	2	45	2	0.135	6.075	0.0062	0.279
4	3	120	3	0.050	6.000	0.0023	0.276
5	4	210	4	0.018	3.780	0.0008	0.168
6	5	252	5	0.007	1.764		
7	6	210	6	0.0025	0.525		
8	7	120	7	0.001	0.120		
9	8	45	8				
10	9	10	9				
11	10	1	10				

Interpretation: Winning energy level is for <u>three</u> units to be in energy level $e_1 = 1$, followed closely by <u>four</u> units at that level.

Computing Likelihoods for Each Configuration:

Given a specific energy for the upper level, e_1 , we can compute the energy for that configuration.

System state	M = # Units at e ₁	Q = Total number of microstates	$E_j = M * e_1$ $e_1 = 1$	$\exp(-\beta E_j)$ $\beta = 1$	$Q^* \exp(-\beta E_j)$	
1	0	1	0	1.000	1.000	
2	1	10	1	0.368	3.680	
3	2	45	2	0.135	6.075	
4	3	120	3	0.050	6.000	
5	4	210	4	0.018	3.780	Energy level with most microstates is not the
6	5	252	5	0.007	1.764	one that has the lowest
7	6	210	6	0.0025	0.525	energy!
8	7	120	7	0.001	0.120	
9	8	45	8	Negligible	Negligible	
10	9	10	9	Negligible	Negligible	
11	10	1	10	Negligible	Negligible	

 $Z = \sum \exp(-\beta E_j) = 1.000 + 3.680 + 6.075 + 6.000 + 3.780 + 1.764 + 0.525 + 0.120 = 21.944$

Interpretation of Results:

We just found the configuration (number of units at an the upper energy level) that was most probable, given a specific value for that energy level e₁:

- 1. It <u>was NOT</u> the level that had the lowest overall energy.
- 2. It <u>was NOT</u> the level that had the most microstates.
- 3. <u>It was in-between</u>. The "winning level" was a combination of low total energy AND lots of microstates.

When we get to free energy minimization, we'll be able to find this energy level much faster – single-shot equation.

What We've Accomplished So Far:

We now know how to do two steps in our journey through the "Rocky Mountains" of energy-based machine learning:

- 1. <u>Compute the partition function for the system, and then</u>
- 2. <u>Compute the most likely probability</u> for a given configuration (i.e., given specific M and (N-M)),

Based on the probabilities and number of microstates per energy level, we are now able to:

Figure out the most likely system configuration.

This means that we are EXTREMELY CLOSE, in practice, to free energy minimization.

What We've Done So Far:

- **1.** Partition Function
- 2. Probabilities (statistical mechanics method)

Next Steps:

- 3. Entropy
- 4. Free Energy (& minimization thereof)
- 5. Bayesian probabilities
- 6. Kullback-Leibler Divergence
- 7. Inference (approximation methods, e.g. variational Bayes)