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7.1 Dependence of SSE on All Output Nodes

As a next step, we want to compute the dependence of the summed squared
error on the input-to-hidden weights.

The key difference between this calculation and the previous one is that
earlier, when we were interested in the dependence of the summed squared
error (SSE) on a specific hidden-to-output connection weight vh,o, we only
needed to think about the squared error at output node Oo. The other output
nodes did not impact the dependence of the SSE on this output node.

In contrast, this time, when we want to consider the dependence of the
SSE on a given input-to-hidden connection weight wi,h, we now have to think
about the influence of the squared errors from each of the output nodes. This
is because the input-to-hidden connection weight wi,h influences the activation
(resulting output) of hidden node Hh. The activation of this hidden node,
however, impacts all of the output nodes. Therefore, we need to consider the
SSE at all the output nodes, and their back-propagated influence on Hh, and
from that hidden node to wi,h. This is shown in Figure 7.1.

We thus desire

∂SSE

∂wi,h

=
O∑

o=1

[∂SE
∂Eo

∂Eo

∂wi,h

]
=

O∑
o=1

[∂SE
∂Eo

∂Eo

∂Ao

∂Ao

∂wi,h

]
(7.1)

Thus far, we are identical with the previous initial step in backpropagation,
given in Eqn. ??, with the exception that the last term involves the dependence
of the output activation on a specific input-to-hidden weight, instead of hidden-
to-output weight. Also, we are summing over the full set of squared errors at
each of the output nodes.

Before we go further, we’re going to write the dependence of the activation
(actual output) at output node Oo on the input-to-hidden connection weight
connecting input node Ii to hidden node Hh. That is, we will write the
expression for

∂Ao

∂wi,h

(7.2)

We know already that the activation (actual output) of the output node
o is a result of the transfer function being applied to the summed inputs to
that node.
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Figure 7.1: Dependence of the Summed Squared Error (SSE) on the input-to-
hidden connection weight wi,h requires tracing the dependence of the squared
error at each output node through hidden node h and from there to the
connection weight wi,h. This is shown for the case where the connection
weight is between input node 3 and hidden node 2, w3,2, where the nodes in
each layer are numbered in the manner of Python code, beginning with the
zeroth node in each layer.
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Ao = F (NdInpto) (7.3)

Now, what we need is to work through the dependence of Ao on the
connection weight wi,h using this relation.

∂Ao

∂wi,h

=
∂F (NdInpto)

∂wi,h

=
∂F (NdInpto)

∂(NdInpto)

∂(NdInpto)

∂wi,h

(7.4)

We have previously found the dependence of the transfer function F on
the node input; we already know that

∂F (NdInpto)

∂NdInpto
= αFo

[
1 − Fo

]
(7.5)

We can substitute this into Eqn. 7.4 to obtain

∂Ao

∂wi,h

=
∂F (NdInpto)

∂wi,h

= αFo

[
1 − Fo

]∂(NdInpto)

∂wi,h

(7.6)

Now, we need to find

∂(NdInpto)

∂wi,h

(7.7)

To do this, we recall from Eq. ?? that

NdInpto =
H∑

h=1

vh,o ∗Hh. (7.8)

We substitute this into Eqn. 7.7, while changing the index on the summa-
tion from h to q, to obtain

∂(NdInpto)

∂wi,h

=

∂
( H∑

q=1

vq,o ∗Hq

)
∂wi,h

(7.9)

Since the dependence holds only in the case where q = h, we can simplify
this as

∂(NdInpto)

∂wi,h

= vh,o
∂Hh

∂wi,h

(7.10)

We can write an expression for the activation of the hidden node Hh as
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Hh = F (
I∑

i=1

wi,h ∗ Inputi) = F (NdInputh) (7.11)

Hh = F (
I∑

i=1

wi,h ∗ Inputi) = F (NdInputh) (7.12)

We can write the node inputs to hidden node h as

NdInpth =
I∑

i=1

wi,h ∗ Inputi. (7.13)

We can substitute from Eqn. 7.13 into Eqn. 7.12 to obtain

Hh = F (NdInputh) = F
( I∑

i=1

wi,h ∗ Inputi
)

(7.14)

We can substitute this expression for Hh into Eqn. 7.8 to obtain

NdInpto =
H∑

h=1

vh,o ∗Hh =
H∑

h=1

vh,o ∗ F
( I∑

i=1

wi,h ∗ Inputi
)
. (7.15)

Now, let’s use this expression to figure out the dependence of the node
inputs at output node o on the input-to-hidden connection weight wi,h.
Specifically, going back to Eqn. 7.7, we introduce a substitution based on
Eqn. 7.15 and write

∂(NdInpto)

∂wi,h

=

∂
[ H∑
h=1

vh,o ∗ F
( I∑

i=1

wi,h ∗ Inputi
)]

∂wi,h

(7.16)

The hidden-to-output connection weights vh,o are a constant with regard
to the specific input-to-hidden connection weight wi,h, and so we can take
these terms (along with their summation) outside of the partial derivative.
We also want to distinguish between the sum over all possible hidden nodes
and the specific one with which we want to compute a dependence, and so
we change the running index on the sum over the hidden nodes to be q. Thus
we write
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∂(NdInpto)

∂wi,h

=
H∑
q=1

vq,o

∂
[
F
( I∑

i=1

wi,q ∗ Inputi
)]

∂wi,h

(7.17)

We know that the transfer function is being taken, in each case, at hidden
node q, and we know that the derivative of this is given as

∂
[
F
( I∑

i=1

wi,q ∗ Inputi
)]

∂wi,h

=
∂F (NdInputq)

∂NdInputq

∂NdInputq
∂wi,h

= αFq(1 − Fq) ∗
∂NdInputq

∂wi,h

= αFq(1 − Fq) ∗
∂
( I∑

i=1

wi,q ∗ Inputi
)

∂wi,h

= αFq(1 − Fq)Inputi

(7.18)

We note that this dependence occurs only when wi,q = wi,h (all other
terms drop out in the last sum), so that q = h, and we can rewrite the
previous Eqn. 7.18 as

∂
[
F
( I∑

i=1

wi,q ∗ Inputi
)]

∂wi,h

= αFh(1 − Fh)Inputi (7.19)

We return now to the initial equation for backpropagating the dependence
of the summed squared error SSE on a given input-to-hidden connection
weight, Eqn. 7.1, and substitute what we have gained in this last step to
obtain
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∂SSE

∂wi,h

=
O∑

o=1

[∂SE
∂Eo

∂Eo

∂wi,h

]
=

O∑
o=1

[∂SE
∂Eo

∂Eo

∂Ao

∂Ao

∂wi,h

]
=

O∑
o=1

[∂SE
∂Eo

∂Eo

∂Ao

αvh,oFh(1 − Fh)Inputi

]
= α

O∑
o=1

[∂SE
∂Eo

∂Eo

∂Ao

vh,oFh(1 − Fh)Inputi

]
(7.20)

We can quickly obtain the dependence of the squared error on the error
(first term inside the summation) and the dependence of the error on the
activation (second term inside the summation), using results previously
obtained, referencing Eqn. ?? which had previously given us

∂SSE

∂Eo

=
1

2

∂E2
q=o

∂Eo

= Eo (7.21)

and also Eqn. ??

∂Eo

∂Fo

= −1. (7.22)

so that we can write

∂SSE

∂wi,h

= α
O∑

o=1

[∂SE
∂Eo

∂Eo

∂Ao

vh,oFh(1 − Fh)Inputi

]
= α

O∑
o=1

[
Eo
∂Eo

∂Ao

vh,oFh(1 − Fh)Inputi

]
= α

O∑
o=1

[
Eo(−1)vh,oFh(1 − Fh)Inputi

]
= −α

O∑
o=1

[
Eovh,oFh(1 − Fh)Inputi

]
(7.23)

However, while the summation is over all output nodes, the terms involving
the specific hidden node involved in the dependence of the SSE on the input-
to-hidden connection weight wi,h, together with the actual value of the input
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node i, that is, Inputi, are constants relative to the output error terms. We
can thus pull them out of the summation and write

∂SSE

∂wi,h

= −α
O∑

o=1

[
Eovh,oFh(1 − Fh)Inputi

]
= −αFh(1 − Fh)Inputi

O∑
o=1

vh,oEo

(7.24)

As previously mentioned, this method was originally developed by Paul
Werbos and presented in his Ph.D. dissertation at Harvard University [1].
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