
Statistical Mechanics, Neural
Networks, and Machine Learning:

Using Powerful Brain Strategies to
Improve Machine Learning

DRAFT Chapter 5
The Transfer Function:

The Essence of a Neural Network
Microstructure

Alianna J. Maren
Northwestern University School of Professional Studies

Master of Science in Data Science Program

Chapter Draft: 2020-01-02



2

5.1 Neural Network Microstructures and Trans-

fer Functions

In order to design good (and effective) architectures, we need to understand
neural networks at three different levels which were identified in the previous
chapters:

1. Microstructure - what happens inside a given node or “neuron,”

2. Mesostructure (where meso means middle -the structure of a simple
neural network, e.g., the number of layers, number of nodes per layer,
etc., and

3. Macrostructure - architectures constructed from multiple interacting
neural networks, or when one large neural network contains (relatively
self-contained) sub-networks.

In this chapter, we focus on microstructures’. Specifically, we’re going
to look at the various transfer functions that can be used within a neural
network. We will give most of our attention, using a simple worked example,
to the signmoid transfer function, although we’ll also identify other common
ones, and we’ll also assess which transfer functions best for different neural
networks, and why.

Once we’ve completed this chapter, we will be able to identify:

1. What sort of transfer function(s) to use for a particular kind of neural
network,

2. What the implications of that transfer function will be in network
performance, and also

3. What kinds of potential problems can result from using our selected
transfer function.

The role of transfer functions in neural networks is to take the set of
inputs that go into a single node, within the neural network, and transform
that set of input values into a single, useful output value.

AUTHOR’S NOTE for further work: Put in a figure showing role
of a transfer function in a NN.



5.1. NEURAL NETWORKMICROSTRUCTURES AND TRANSFER FUNCTIONS3

Early neural networks almost exclusively used either the sigmoid (logistic)
or hyperbolic tangent (tanh) transfer functions. The following Figure 5.1
illustrates these two functions. The sigmoid function was initially the most
popular. However, it too often led to networks that couldn’t converge, because
(fill in).

As a result, the hyperbolic tangent became much more popular, especially
for the hidden nodes in a network [1].

Figure 5.1: The sigmoid (logistic) transfer function.

More recently, a different kind of transfer function, the ReLU (for Rectified
Linear Unit) has become popular, primarily for convolutional neural networks
(CNNs) and restricted Boltzmann machines (RBMs) [2].

In this chapter, we will define the three most widely-used transfer functions,
and show how to compute their derivatives. We need these derivatives, because
they are a crucial part of computing the gradient descent, which is the essence
of the learning method that we’ll use for a wide range of neural networks and
deep learning architectures.



4

Figure 5.2: The sigmoid (logistic) transfer function.

5.2 Example: Transfer Functions in Action

The following Figure 5.3 shows a diagram for one of the simplest possible
neural networks.

Example 5.1.
Figure shows an entire, albeit very simple, neural network that has already

been trained to give a good solution for the classic X-OR problem. This
problem is important in neural network circles - and was a benchmark in
proving a valid learning rule for neural networks, because the solution for this
is not in a linearly separable space. That is, we can’t draw a set of straight
lines and “separate” the solution into the appropriate number of spaces, one
space per solution.

There are just two inputs to this network, and they can be any of the four
possible combinations of 0 and 1. Because we have four possible inputs, we
could potentially have four different output “classes.” Instead, we want to
have only two output classes:

• Inputs 0, 0 give an output (“classification”) of 0,

• Inputs of either 1, 0 OR 0, 1 (this is the “OR” part of the “X-OR” or
“Exclusive-OR” problem) should give an output (“classification”) of 1,
and

• Inputs 1, 1 give an output (“classification”) of 0.



5.2. EXAMPLE: TRANSFER FUNCTIONS IN ACTION 5

Figure 5.3: A worked example for a simple MLP neural network designed
to solve the X-OR problem. This network has three layers, with two nodes
in the input layer, two in the middle or “hidden” layer, and just one in the
output layer. See the text for a detailed explanation. Figure taken from A.J.
Maren et al. (1990), Handbook of Neural Computing Applications, Chapter 5,
Figure 5.3, pg. 62. (New York: Academic).



6

It is very easy to create a network that will satisfy the first two conditions
for solving the X-OR problem. However, it is very tough to get a set of
connection weights that will satisfy all three of these conditions.

This doesn’t mean that there are only a few “solutions” that will work.
In fact, even for this easiest-of-all-possible neural networks, there are a wide
range of different solution sets, where each set contains an infinite number
of possible values, each of which will work. However, stumbling onto any of
these sets is not easy; this is why we’ve needed learning algorithms.

AUTHOR’S NOTE for further work: Complete the walk-through
for this example.

5.3 The Sigmoid (Logistic) Transfer Function

We’ll begin with one of the most commonly-used transfer functions, called
the sigmoid function, because it produces an S-shaped curve.

The Sigmoid Transfer Function:

y =
1

1 + exp(−αx)
= (1 + exp(−αx))−1. (5.1)

See this transfer function in Fig. 5.4.
AUTHOR’S NOTE for further work: Redo the above figure: (1)

remove side legend elements; place on the bottom. (2) change the running
indices on x-axis to be easier to read. (3) simplify the y-axis - make it easier
to read.

Before we go further, let’s make a few mathematical comments on this
transfer function.

Interpreting the Sigmoid Transfer Function:

Input text HERE

Its purpose, in the world of neural networks, is to scale the inputs into a
given node to be within a reasonable range for the outputs. That means that



5.3. THE SIGMOID (LOGISTIC) TRANSFER FUNCTION 7

Figure 5.4: The sigmoid (logistic) transfer function.

even if we put very large negative or positive values into the node, we want
the output to be much more limited; we’re choosing a transfer function here
that will limit the outputs to be between 0 and 1.

We want our transfer function to be smoothly continuous; no disconti-
nuities (sudden jumps). Also, we want its overall behavior to be consistent;
we don’t want something that goes up and then goes down. In other words,
we want a function that is monotonic. In our particular case, we want a
function that is monotonically increasing ; that is, it starts with small values
and moves smoothly to progressively larger values. That is exactly what we
get with this particular function.

We notice that this particular function is asymptotic at both extremes,
which is something that we want. This fulfills our previously-stated require-
ment, that we want the outputs to be limited within a certain range. By
asymptotic, we mean that the function approaches certain limits, but never
quite reaches them. When x is a very large negative, the value for y is a
very small positive number; close to (but never quite reaching) zero. (As
x→ −∞, y → +0.) Further, when x is a very large positive, the value for y
approaches (but never quite reaches) 1. (As x→ +∞, y → 1.)



8

5.4 The Transfer Function in Action: Some

Examples

During neural network operations, we use the transfer function itself. Thus,
we gather the inputs to a given node (sum the various inputs, which are the
outputs from nodes in the preceding layer, and multiply each of these inputs
by their corresponding connection weight. These summed and weighted inputs
collectively form the input to a given node. Then, we apply the transfer
function to that input. (The author likes to think of this as “pushing” the
input “through” the transfer function, which is a useful anthropomorphism.)
The result of this is node’s output, also sometimes called the activation of
that node.

To reiterate a previous point, the role of the transfer function here is to
ensure scaling of the inputs to a more reasonable range. Thus, if the inputs
are a large value - say, 10, then the resultant node activation is not very much
different than if the inputs are very large, say 100. Just to work this a little
further, let’s do this calculation, for the case of the sigmoid transfer function,
where we let α = 1.

We’ll call the summed inputs into the node NdInput, for node input. Just
to have notational consistency, let’s say that we’re working with the inputs
from the input layer nodes to the first hidden layer node, which we call H0.

Note: we’re counting our nodes and all other vector and matrix elements
using the Python convention of starting the count with 0, rather than with 1.
Thus, we also dub our inputs into this node with the appropriate subscript,
so we’ll use NdInput0 as the summed total inputs to H0.

For the case where NdInput0 = 10, then exp(−10) = 0.0000454, and
H0 = F (NdInput0) = 1/1.0000454 = 0.999955.

For the case where NdInput0 = 100, then exp(−100) is = 3.72 times 10
to the power of negative 44, which is a very small number, and adding 1 to it
is just incrementally over 1.

Thus, 1 over that number (which is incrementally over 1) is a number that
is just incrementally under 1.

While there’s a difference between this number and 0.999954, that dif-
ference begins in the fifth significant figure after the decimal. Clearly, not
enough to make a big difference.

Just to scope this a little more, let’s obtain the transfer function output
when the input is 1 instead of 10. In this case, we have exp(−1) = 0.3679,



5.5. THE DERIVATIVE OF THE SIGMOID TRANSFER FUNCTION 9

and 1/1.3679 = 0.7310. Referring back to Figure 5.4, we that ...

5.5 The Derivative of the Sigmoid Transfer

Function

To compute the derivative of the sigmoid transfer function, as with almost
every derivative that we’ll take in both this and the following chapters, we’ll
use the chain rule from differential calculus.

AUTHOR’S NOTE for further work: Write additional text.
Introduce chain rule in simple form.

AUTHOR’S NOTE for further work: Write derivative for the
transfer function in chain-rule form.

The derivative of the sigmoid transfer function is shown in Fig. 5.5.

Figure 5.5: The derivative of the sigmoid transfer function .

We’ll need to compute the derivative of the transfer function as part of
the backpropagation algorithm. We’ll do this now, and mentally stash the
results for future use.

The derivative is computed as:

∂y/∂x = −(−α)(1 + exp(−αx))−2exp(−αx)

= α(1 + exp(−αx))−2exp(−αx).
(5.2)



10

As a side note, those of you who are mathematically inclined will note
that we’ve been using the terminology of “partial derivatives” throughout,
when really, there is only a single variable (x) in the equations that we have
just used. The reason for using the partial derivative nomenclature is that
we’ll shortly be deriving the entire backpropagation algorithm, which makes
extensive use of the chain rule, and which also is expressed in terms of partial
derivatives. Thus, we’re just setting ourselves up for an easier usage later.

We want to simplify the results that we’ve just obtained, and to do so,
let’s first study a substitution. We write an equation with the same form, but
with a simpler variable; we’ll let c = exp(−αx). Thus, our simpler equation
reads

∂y/∂x = (1 + c)−2c =
c

(1 + c)2
. (5.3)

Note that we’ve dropped the leading coefficient α; again, that’s just so we
can concentrate on working with the form of the equation; we’ll put it back
in before we’re done.

The mathematics of this equation are such that (if you know what you’re
doing in advance), you can express the derivative of the transfer function
in terms of the original transfer function. To do this, we first note that the
denominator of the original transfer function is now squared, compared to
the original, as was shown in Eqn. 5.1.

As an intermediate step, we rewrite the equation so that the denominator
is in two separate terms

∂y/∂x =
1

1 + c
∗ c

1 + c
. (5.4)

The first term on the right-hand-side is indeed the original transfer function;
recall that

y =
1

1 + exp(−αx)
=

1

1 + c
. (5.5)

Thus, we’ll simply substitute y for the first term on the right in Eqn. 5.4
to obtain

∂y/∂x = y ∗ c

1 + c
. (5.6)

Our job is half-done; we now want to express the last term on the right of
Eqn. 5.6 in terms of y (the original transfer function), and not c. To do this,



5.6. IMPACTOF A BELL-SHAPED TRANSFER FUNCTION DERIVATIVE11

we rewrite the numerator of this last term, both adding and subtracting 1;
because we’re not changing the total value of the numerator, this is allowed.

∂y/∂x = y
[1 + c− 1

1 + c

]
. (5.7)

Now we can split the resulting last term on the right-hand-side into two
parts:

∂y/∂x = y
[1 + c

1 + c
− 1

1 + c

]
. (5.8)

We simplify the first term within the brackets, and for the second, we
notice that we have once again obtained the expression for y, so that we
obtain

∂y/∂x = y
[
1− y

]
. (5.9)

Finally, we re-introduce the term α, which we had dropped earlier in order
to focus on the simplifications. (This was when we went from Eqn. 5.2 to
Eqn. 5.3.) This gives us our final result

∂y/∂x = αy
[
1− y

]
. (5.10)

We’ve now obtained the partial derivative of the transfer function in terms
of its dependence on its (single) variable, x.

The derivative of a function is its slope. Since our transfer function is
monotonically increasing, its slope is always positive. Thus, like the transfer
function itself, we expect the derivative to also be consistently positive.

Thus, we expect that the derivative of transfer function will be approxi-
mately bell-shaped; it will have very small positive values to the far left and
the far right, and achieve a value of 1 in the center.

We notice that it behaves exactly as we predicted.

5.6 Impact of a Bell-Shaped Transfer Func-

tion Derivative

In the previous section, we went through the math to obtain the derivative of
the transfer function, and found that it was bell-shaped. We also identified
the impacts of this bell-shaped function in neural network operation; we found



12

that it “squished” (author’s term) the output into a reasonable range, e.g.,
between 0 and 1. (Instead of from negative to positive infinity.)

However, the impact of this “squishing” is that the derivative of this
function is approximately 0 when the inputs to the transfer function are very
numbers; either large positive or large negative. Further, just as the output
of the transfer function itself was not much different when the inputs where,
for example, 10 and 100, the values of the derivative of the transfer function
are also very small, when there significant differences between the inputs (but
both inputs are large; either large positive or large negative). This has a very
substantial impact on training the neural network.

We’ll postpone further discussion on this until the end of the next chapter,
because we want to see how the transfer function’s derivative plays a role
in the training algorithms. Then, it will become very clear that - although
the training method that we’ll study (backpropagation) is indeed capable of
training a neural networ, it has limitations. These led to the “neural network
winter” of the late 1990’s and early 2000’s, and prompted the search for a
method that would overcome these limitations.

That method, using the Boltzmann machine, has been the basis for deep
learning.

However, that part of the story will wait until much later in this book.



Bibliography

[1] M. Jordan, “Why the logistic function? a tutorial discussion on prob-
abilities and neural networks,” tech. rep., Massachusetts Institute of
Technology, 1995.

[2] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proc. ICML’10; Proc. 27th International Conference
on Machine Learning, (Haifa, Israel), pp. 807–814, June 21 - 24 2010.

13


