Statistical Mechanics for Neural Networks and Deep Learning

with Alianna J. Maren, Ph.D.

Microstates and Partition Functions: Some Simple Examples

The following material accompanies the *Précis* for the book-in-progress, **Statistical Mechanics for Neural Networks and Deep Learning**. For more information, Opt-In at: <u>www.aliannajmaren.com</u>

Alianna J. Maren, Ph.D.

Microstates : A Series of Examples

Example 1:

For a System with Three Units and Two Energy Levels;

A Single Microstate:

Two Units in Level $e_i = 0$, One Unit in Level $e_i = 1$

We can create six different nominal configurations:

Microstates, Example 1 (2)

We can create three different **non-identical** configurations

- Total ways of distributing the N units among the N different total spots: N!
 - Total number of spots available (same as total number of units): N
 - Choice of N different units to fill the first spot: Here, N = 3.
 - Choice of N-1 different (remaining) units to fill the next spot: Here, N-1 = 2.
 - Choice of N-2 different (remaining) units to fill the next spot: Here, N-2 = 1.
 - Total number of ways of distributing the N = 3 units: 3*2*1 = 6.
 - These six configurations contain *some which are identical* with the others.
- Number of units going into Level $e_i = 1$ (or e_1): 1
 - $N_1 = 1$; there is just one spot at e_1 ; this means that there is no way to have a problem distinguishing among multiple units there's only one unit there!
 - Just for formality's sake, we can create the term $N_1! = 1! = 1$.
- Number of ways of populating Level $e_i = 0$ (or e_0): 4
 - After we've put one of the units into Level e_1 , there are $N_2 = N N_1$ units left. (Here, $N_2 = 2$.)

• The way in which we can multiply count the same configuration (the degeneracy) is $N_2! = 2! = 2$.

Number of *countably different* ways of populating the two states:

$$Z = \frac{N!}{N_1!N_2!} = \frac{3*2*1}{1!*2!} = \frac{6}{2} = 3$$

Microstates; Example 1 (3)

Total Number of Accessible Microstates for an N = 3, 2-Level System

Microstate Type	Number of Units in Level <i>e_o</i>	Number of Units in Level <i>e</i> 1	Total Accessible Microstates
1	3	0	1
2	2	1	3
3	1	2	3
4	0	3	1

Total number of distinct, accessible microstates: 8

Microstates; Example 1 (4)

Total Number of Accessible Microstates for an N = 3, 2-Level System

Computing the probability distribution

Example 1(a): Suppose that the energy of $e_0 = 0$, and the energy of $e_1 = 1$

$$p_j = \exp(-\beta E_j) / Z$$

where j refers to a specific microstate, and E_i is the energy of that microstate. Let $\beta = 1$

Z, the normalization constant, is the partition function

Microstate Type	Number of Units in Level e ₀	Number of Units in Level e_1	Energy for that Microstate	Total Energy for that Microstate	<i>exp(-E_j)</i> for that Microstate	N = Total Accessible Instances of that Microstate	exp(-E _j) * N
1	3	0	3*0+0*1	0	1	1	1.000
2	2	1	2*0 + 1*1	1	0.368	3	1.104
3	1	2	1*0 + 2*1	2	0.135	3	0.405
4	0	3	0*0+3*1	3	0.050	1	0.050

Sum of all the $p_i *Z*N$: 1.000 + 1.104 + 0.405 + 0.050 = 2.559

Microstates; Example 1 (5)

Total Number of Accessible Microstates for an N = 3, 2-Level System

Computing the probability distribution

$$l = \frac{1}{Z} \sum_{j} p_{j} = \frac{1}{Z} \sum_{j} \exp(-\beta E_{j})$$
$$Z = \sum_{j} \exp(-\beta E_{j})$$

Sum of all the exp(- E_j)*N: 1.000 + 1.104 + 0.405 + 0.050 = 2.559 **Z = 2.559**

Microstate Type	Number of Units in Level <i>e</i> ₀	Number of Units in Level <i>e</i> 1	Total <i>E_j</i> Energy for that Microstate	<i>exp(-E_j)</i> for that Microstate	N = Total Accessible Microstate Instances	p _j = exp(-E _j) * N/Z
1	3	0	0	1	1	1.000/2.559 = 0.391
2	2	1	1	0.368	3	1.104/2.559 = 0.431
3	1	2	2	0.135	3	0.405/2.559 = 0.158
4	0	3	3	0.050	1	0.050/2.559 = 0.020

Sum of all p_i : 0.391 + 0.431 + 0.158 + 0.020 = 1.000

(Sum of the probabilities = 1)

Microstates; Example 1 (6)

Total Number of Accessible Microstates for an N = 3, 2-Level System

Microstate Type	Number of Units in Level e _o	Number of Units in Level <i>e</i> 1	Total Energy for that Microstate	<i>exp(-E_j)</i> for that Microstate	N = Total Accessible Microstate Instances	p _j = exp(-E _j) * N/Z
1	3	0	0	1	1	0.391
2	2	1	1	0.368	3	0.431
3	1	2	2	0.135	3	0.158
4	0	3	3	0.050	1	0.020

Probability of finding all units in energy state e_0 : 0.391 Probability of finding two of three units in energy state e_0 , and one of three units in energy state e_1 : 0.431 WHY?

ANSWER:

The energy of the whole microstate is higher when one unit is in state e_1 and the other two are in e_0 , so the probability of that state occurring is lower – **BUT** – that state occurs more often (N = 3 vs. N = 1), so it becomes populated more often.

Microstates; Example 1 (7)

Total Number of Accessible Microstates for an N = 3, 2-Level System

Exercise 1:

Select a different value for the energy at Level 1 (e_1). (We had $e_1 = 1$ for the previous example.) Figure out the set of probabilities for each of the microstates. (You will have to compute a new value for Z.)

Microstate Type	Number of Units in Level e _o	Number of Units in Level <i>e</i> 1	Total Energy for that Microstate	<i>exp(-E_j)</i> for that Microstate	N = Total Accessible Microstate Instances	p _j = exp(-E _j) * N/Z
1	3	0	0	1	1	?
2	2	1	1*x	?	3	?
3	1	2	2*x	?	3	?
4	0	3	3*x	?	1	?

Interpret / explain your results.

Microstates : Example 2 (1)

For a System with Four Units and Two Energy Levels;

Microstate Type: Two Units in Level $e_i = 0$, Two Units in Level $e_i = 1$

We can create 24 different nominal configurations, with SIX distinct (non-identical) microstates:

Microstates: Example 2 (2)

We can create six different **non-identical** configurations

- Total ways of distributing the N units among the N different total spots: N!
 - Total number of spots available (same as total number of units): 4
 - Choice of N different units to fill the first spot: Here, N = 4.
 - Choice of N-1 different (remaining) units to fill the next spot: Here, N-1 = 3.
 - Choice of N-2 different (remaining) units to fill the next spot: Here, N-2 = 2.
 - Total number of ways of distributing the N = 4 units: 4*3*2*1 = 24.
 - These 24 configurations contain *some which are identical* with the others.
- Number of units going into Level $e_i = 1$ (or e_1): 2
 - $N_1 = 2$; there are two spots at E_1 ; so we can have degeneracy at this level
 - The degeneracy is $N_1! = 2! = 2$.
- Number of ways of populating Level $e_i = 0$ (or e_0): 2
 - After we've put two of the units into Level e_1 , there are $N_2 = N N_1$ units left. (Here, $N_2 = 2$.)

• The way in which we can multiply count the same configuration (the degeneracy) is $N_2! = 2! = 2$.

Number of *countably different* ways of populating the two states:

$$Z = \frac{N!}{N_1!N_2!} = \frac{4*3*2*1}{2!*2!} = \frac{24}{4} = 6$$

Microstates : Example 2 (3)

For a System with Four Units and Two Energy Levels; *Microstate Type:* Three Units in Level $e_i = 0$, One Unit in Level $e_i = 1$

We can create 24 different nominal configurations, with FOUR distinct (non-identical) microstates:

Microstates : Example 2 (4)

For the Microstate Type: Three Units in Level $e_i = 0$, One Unit in Level $e_i = 1$ We can create four different **non-identical** configurations

- Total ways of distributing the N units among the N different total spots: N!
 - Total number of ways of distributing the N = 4 units: 4*3*2*1 = 24.
- Number of units going into Level $e_i = 1$ (or e_1): 1
 - $N_1 = 1$; there is one spot at e_1 ; so there is no degeneracy at this level.
 - The degeneracy is $N_1! = 1! = 1$.
- Number of ways of populating Level $e_i = 0$ (or e_0): 6 (with the remaining units)
 - After we've put one of the units into Level e_1 , there are $N_2 = N N_1 = 3$ units left.

• The way in which we can multiply count the same configuration (the degeneracy) is $N_2! = 3! = 3*2*1$.

Number of *countably different* ways of populating the two states:

$$Z = \frac{N!}{N_1! N_2!} = \frac{4*3*2*1}{3!*1!} = \frac{24}{(3*2*1)(1)} = 4$$

Microstates: Example 2 (5)

Total Number of Accessible Microstates for an N = 3, 2-Level System

Computing the probability distribution

Example 2: Suppose that the energy of $e_0 = 0$, and the energy of $e_1 = 1$

$$p_j = \exp(-\beta E_j) / Z$$

Microstate Type	Number of Units in Level <i>e</i> ₀	Number of Units in Level <i>e</i> 1	Energy for that Microstate	Total Energy for that Microstate	<i>exp(-E_j)</i> for that Microstate	N = Total Accessible Microstate Instances	exp(-E _j) * N
1	4	0	4*0+0*1	0	1	1	1.000
2	3	1	3*0 + 1*1	1	0.368	4	1.472
3	2	2	2*0+2*1	2	0.135	6	0.810
4	1	3	1*0 + 3*1	3	0.050	4	0.200
5	0	4	0*0+4*1	4	0.018	1	0.018

Sum of all the $p_j *Z*N$: 1.000 + 1.472 + 0.810 + 0.200 + 0.018 = 3.500 Z = 3.500

Microstates; Example 2 (6)

Total Number of Accessible Microstates for an N = 3, 2-Level System

Computing the probability distribution

$$Z = \sum_{j} \exp(-\beta E_{j})$$

Z = 3.500

Microstate Type	Number of Units in Level <i>e_o</i>	Number of Units in Level <i>e</i> 1	Total Energy for that Microstate	<i>exp(-E_j)</i> for that Microstate	N = Total Accessible Microstate Instances	p _j = exp(-E _j) * N/Z
1	4	0	0	1	1	1.000/3.500 = 0.286
2	3	1	1	0.368	4	1.472/3.500 = 0.421
3	2	2	2	0.135	6	0.810/3.500 = 0.231
4	1	3	3	0.050	4	0.200/3.500 = 0.057
5	0	4	4	0.018	1	0.018/3.500 = 0.005

Sum of all p_j : 0.286 + 0.421 + 0.231 + 0.057 + 0.005 = 1.000

(Sum of the probabilities = 1)

Microstates; Example 2 (7)

Total Number of Accessible Microstates for an N = 4, 2-Level System

Exercise 2:

AS BEFORE: Select a different value for the energy at Level 1 (e_1). (We had $e_1 = 1$ for the previous example.) Figure out the set of probabilities for each of the microstates. (You will have to compute a new value for Z.)

Microstate Type	Number of Units in Level <i>e</i> ₀	Number of Units in Level <i>e</i> 1	Total Energy for that Microstate	<i>exp(-E_j)</i> for that Microstate	N = Total Accessible Microstate Instances	p _j = exp(-E _j) * N/Z
1	4	0	0	1	1	?
2	3	1	1*x	?	4	?
3	2	2	2*x	?	6	?
4	1	3	3*x	?	4	?
5	0	4	4*x	?	1	?

Interpret / explain your results.